Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stand Composition, Tree Proximity and Size Have Minimal Effects on Leaf Function of Coexisting Aspen and Subalpine Fir.

Identifieur interne : 001660 ( Main/Exploration ); précédent : 001659; suivant : 001661

Stand Composition, Tree Proximity and Size Have Minimal Effects on Leaf Function of Coexisting Aspen and Subalpine Fir.

Auteurs : Aaron C. Rhodes [États-Unis] ; Trevor Barney [États-Unis] ; Samuel B. St Clair [États-Unis]

Source :

RBID : pubmed:27124496

Descripteurs français

English descriptors

Abstract

Forest structural heterogeneity due to species composition, spatial relationships and tree size are widely studied patterns in forest systems, but their impacts on tree function are not as well documented. The objective of this study was to examine how stand composition, tree proximity relationships and tree size influence the leaf functional traits of aspen, an early successional species, and subalpine fir, a climax species. We measured foliar nutrients, nonstructural carbohydrates (aspen only), defense chemistry and xylem water potential of aspen and subalpine fir trees in three size classes growing in close proximity or independently from other trees under three stand conditions: aspen dominant, aspen-conifer mixed, and conifer dominant stands. Close proximity of subalpine fir to aspen reduced aspen's storage of starch in foliar tissue by 17% suggesting that competition between these species may have small effects on carbon metabolism in aspen leaves. Simple sugar (glucose + sucrose) concentrations in aspen leaves were slightly higher in larger aspen trees than smaller trees. However, no differences were found in stem water potential, foliar concentrations of nitrogen, phosphorus, or secondary defense chemicals of aspen or subalpine fir across the gradients of stand composition, tree proximity or tree size. These results suggest that mechanisms of coexistence allow both aspen and subalpine fir to maintain leaf function across a wide range of stand structural characteristics. For aspen, resource sharing through its clonal root system and high resource storage capacity may partially contribute to its functional stability in mixed aspen-conifer stands.

DOI: 10.1371/journal.pone.0154395
PubMed: 27124496
PubMed Central: PMC4849632


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stand Composition, Tree Proximity and Size Have Minimal Effects on Leaf Function of Coexisting Aspen and Subalpine Fir.</title>
<author>
<name sortKey="Rhodes, Aaron C" sort="Rhodes, Aaron C" uniqKey="Rhodes A" first="Aaron C" last="Rhodes">Aaron C. Rhodes</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant and Wildlife Sciences, Brigham Young University, Provo, Utah</wicri:regionArea>
<placeName>
<region type="state">Utah</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Barney, Trevor" sort="Barney, Trevor" uniqKey="Barney T" first="Trevor" last="Barney">Trevor Barney</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant and Wildlife Sciences, Brigham Young University, Provo, Utah</wicri:regionArea>
<placeName>
<region type="state">Utah</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="St Clair, Samuel B" sort="St Clair, Samuel B" uniqKey="St Clair S" first="Samuel B" last="St Clair">Samuel B. St Clair</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant and Wildlife Sciences, Brigham Young University, Provo, Utah</wicri:regionArea>
<placeName>
<region type="state">Utah</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27124496</idno>
<idno type="pmid">27124496</idno>
<idno type="doi">10.1371/journal.pone.0154395</idno>
<idno type="pmc">PMC4849632</idno>
<idno type="wicri:Area/Main/Corpus">001813</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001813</idno>
<idno type="wicri:Area/Main/Curation">001813</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001813</idno>
<idno type="wicri:Area/Main/Exploration">001813</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Stand Composition, Tree Proximity and Size Have Minimal Effects on Leaf Function of Coexisting Aspen and Subalpine Fir.</title>
<author>
<name sortKey="Rhodes, Aaron C" sort="Rhodes, Aaron C" uniqKey="Rhodes A" first="Aaron C" last="Rhodes">Aaron C. Rhodes</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant and Wildlife Sciences, Brigham Young University, Provo, Utah</wicri:regionArea>
<placeName>
<region type="state">Utah</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Barney, Trevor" sort="Barney, Trevor" uniqKey="Barney T" first="Trevor" last="Barney">Trevor Barney</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant and Wildlife Sciences, Brigham Young University, Provo, Utah</wicri:regionArea>
<placeName>
<region type="state">Utah</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="St Clair, Samuel B" sort="St Clair, Samuel B" uniqKey="St Clair S" first="Samuel B" last="St Clair">Samuel B. St Clair</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant and Wildlife Sciences, Brigham Young University, Provo, Utah</wicri:regionArea>
<placeName>
<region type="state">Utah</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abies (anatomy & histology)</term>
<term>Abies (physiology)</term>
<term>Carbon (metabolism)</term>
<term>Ecosystem (MeSH)</term>
<term>Forests (MeSH)</term>
<term>Fructose (metabolism)</term>
<term>Glucose (metabolism)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Stems (metabolism)</term>
<term>Populus (anatomy & histology)</term>
<term>Populus (physiology)</term>
<term>Starch (metabolism)</term>
<term>Trees (anatomy & histology)</term>
<term>Trees (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Abies (anatomie et histologie)</term>
<term>Abies (physiologie)</term>
<term>Amidon (métabolisme)</term>
<term>Arbres (anatomie et histologie)</term>
<term>Arbres (physiologie)</term>
<term>Carbone (métabolisme)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Forêts (MeSH)</term>
<term>Fructose (métabolisme)</term>
<term>Glucose (métabolisme)</term>
<term>Populus (anatomie et histologie)</term>
<term>Populus (physiologie)</term>
<term>Racines de plante (métabolisme)</term>
<term>Tiges de plante (métabolisme)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Fructose</term>
<term>Glucose</term>
<term>Starch</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Abies</term>
<term>Arbres</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Abies</term>
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plant Stems</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Amidon</term>
<term>Carbone</term>
<term>Feuilles de plante</term>
<term>Fructose</term>
<term>Glucose</term>
<term>Racines de plante</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Abies</term>
<term>Arbres</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Abies</term>
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Ecosystem</term>
<term>Forests</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Forêts</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Forest structural heterogeneity due to species composition, spatial relationships and tree size are widely studied patterns in forest systems, but their impacts on tree function are not as well documented. The objective of this study was to examine how stand composition, tree proximity relationships and tree size influence the leaf functional traits of aspen, an early successional species, and subalpine fir, a climax species. We measured foliar nutrients, nonstructural carbohydrates (aspen only), defense chemistry and xylem water potential of aspen and subalpine fir trees in three size classes growing in close proximity or independently from other trees under three stand conditions: aspen dominant, aspen-conifer mixed, and conifer dominant stands. Close proximity of subalpine fir to aspen reduced aspen's storage of starch in foliar tissue by 17% suggesting that competition between these species may have small effects on carbon metabolism in aspen leaves. Simple sugar (glucose + sucrose) concentrations in aspen leaves were slightly higher in larger aspen trees than smaller trees. However, no differences were found in stem water potential, foliar concentrations of nitrogen, phosphorus, or secondary defense chemicals of aspen or subalpine fir across the gradients of stand composition, tree proximity or tree size. These results suggest that mechanisms of coexistence allow both aspen and subalpine fir to maintain leaf function across a wide range of stand structural characteristics. For aspen, resource sharing through its clonal root system and high resource storage capacity may partially contribute to its functional stability in mixed aspen-conifer stands.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27124496</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>03</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Stand Composition, Tree Proximity and Size Have Minimal Effects on Leaf Function of Coexisting Aspen and Subalpine Fir.</ArticleTitle>
<Pagination>
<MedlinePgn>e0154395</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0154395</ELocationID>
<Abstract>
<AbstractText>Forest structural heterogeneity due to species composition, spatial relationships and tree size are widely studied patterns in forest systems, but their impacts on tree function are not as well documented. The objective of this study was to examine how stand composition, tree proximity relationships and tree size influence the leaf functional traits of aspen, an early successional species, and subalpine fir, a climax species. We measured foliar nutrients, nonstructural carbohydrates (aspen only), defense chemistry and xylem water potential of aspen and subalpine fir trees in three size classes growing in close proximity or independently from other trees under three stand conditions: aspen dominant, aspen-conifer mixed, and conifer dominant stands. Close proximity of subalpine fir to aspen reduced aspen's storage of starch in foliar tissue by 17% suggesting that competition between these species may have small effects on carbon metabolism in aspen leaves. Simple sugar (glucose + sucrose) concentrations in aspen leaves were slightly higher in larger aspen trees than smaller trees. However, no differences were found in stem water potential, foliar concentrations of nitrogen, phosphorus, or secondary defense chemicals of aspen or subalpine fir across the gradients of stand composition, tree proximity or tree size. These results suggest that mechanisms of coexistence allow both aspen and subalpine fir to maintain leaf function across a wide range of stand structural characteristics. For aspen, resource sharing through its clonal root system and high resource storage capacity may partially contribute to its functional stability in mixed aspen-conifer stands.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rhodes</LastName>
<ForeName>Aaron C</ForeName>
<Initials>AC</Initials>
<AffiliationInfo>
<Affiliation>Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barney</LastName>
<ForeName>Trevor</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>St Clair</LastName>
<ForeName>Samuel B</ForeName>
<Initials>SB</Initials>
<AffiliationInfo>
<Affiliation>Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>04</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>30237-26-4</RegistryNumber>
<NameOfSubstance UI="D005632">Fructose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-25-8</RegistryNumber>
<NameOfSubstance UI="D013213">Starch</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D028202" MajorTopicYN="N">Abies</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065928" MajorTopicYN="N">Forests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005632" MajorTopicYN="N">Fructose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013213" MajorTopicYN="N">Starch</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>04</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27124496</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0154395</ArticleId>
<ArticleId IdType="pii">PONE-D-15-54147</ArticleId>
<ArticleId IdType="pmc">PMC4849632</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biom J. 2008 Jun;50(3):346-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18481363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2001 Oct;158(4):438-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18707338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Jan;31(1):68-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21389003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Jun;31(6):582-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21602559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2011 Nov;178(5):E124-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22030738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e56843</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23451096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2015 Nov;35(11):1141-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26507272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1994 Dec;100(3):302-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1984 Nov;64(3):319-321</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1986 Sep;70(2):227-233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311662</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Utah</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Utah">
<name sortKey="Rhodes, Aaron C" sort="Rhodes, Aaron C" uniqKey="Rhodes A" first="Aaron C" last="Rhodes">Aaron C. Rhodes</name>
</region>
<name sortKey="Barney, Trevor" sort="Barney, Trevor" uniqKey="Barney T" first="Trevor" last="Barney">Trevor Barney</name>
<name sortKey="St Clair, Samuel B" sort="St Clair, Samuel B" uniqKey="St Clair S" first="Samuel B" last="St Clair">Samuel B. St Clair</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001660 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001660 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27124496
   |texte=   Stand Composition, Tree Proximity and Size Have Minimal Effects on Leaf Function of Coexisting Aspen and Subalpine Fir.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27124496" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020